

White Paper – Turbo Charge Your Legacy Migration Project

Turbo Charge Your Legacy
Migration Project

Upfront Benefits Using an Incremental
Process

Introduction
Many businesses know from experience that projects for:

• Legacy Application Enhancement

• Legacy Application Migration

• Legacy Application Integration with Web Services

(Web Portal)

can be quite daunting and expensive. These projects

require a huge investment in time, effort and money. The

costs incurred to complete major work in a large core-

business application – to make it deployable and functional

in a production environment - can be quite substantial.

Depending on the time it takes to finish developing, testing,

and deploying the entire application, return on investment

for the new application is often delayed for years.

For businesses that need to transition or enhance their

monolithic legacy applications to a more agile environment

where they can mix and match business logic into new

applications, Crystal Point’s transition-by-stages solution

using AppViewXS 2.0 and the Struts Framework provides

a nice answer. By overcoming the traditional inherent

challenges of legacy application projects, businesses can

decrease their cost before benefit gap, identify performance

issues upfront, match development process to budget cycles,

modernize and extend the life of their existing application.

The Challenges of Legacy Application Projects

Cost Before Benefit Gap Issues

The timeframe to implement projects for large, core-

business legacy applications can be staggering; easily

spanning years or even decades. The delay between

incurred costs and achieved benefit is correspondingly

large.

Minimizing that delay through incremental development

has been difficult to achieve. When development spans

entirely different operating environments – such as moving

Guardian or Safeguard applications to Java - incremental

development has been largely impractical. Therefore, no

ROI occurs before the entire new application is fully

developed, tested and implemented. The cost-benefit gap

obviously, is huge.

Project Management Issues

Businesses conducting major legacy application

development projects face significant, costly, challenges

that may result in going over budget and past deadlines. A

major reason can be attributed to projects that are so huge

in scope that they become too broad to manage efficiently.

If such projects slip past their phase deadlines, the

anticipated future returns on investment decrease

significantly. Unless real-world results can be achieved as

the project progresses, any difficulty experienced in the

overall project can place future funding in jeopardy, with

the real risk of not receiving the necessary additional

funding to complete the project.

Budget Issues

The costs involved for major work on core business Legacy

Applications are very high. Since incremental development

has been difficult to implement, this often means funding

phases and milestones are equally difficult to define. This

can result in larger funding increments, and increased

difficulty in receiving incremental approval.

Legacy Application Maintenance Issues

Generating added value and benefit to existing legacy

applications, or even conducting day-to-day maintenance of

them, can be complex and difficult.

Finding programmers knowledgeable in some of the

mainframe programming languages used to create legacy

applications is getting harder (i.e., more expensive).

Larger projects take more

time to finish therefore the

return on investment can be

delayed significantly

Procuring money to

completely finance large

legacy application projects is

extremely difficult

Often times, too, a legacy application has been so

extensively modified over the years that additional change

is very difficult to implement.

Performance Issues

Surprisingly, application performance may seem fine in a

testing environment but, once in the production

environment, perform poorly. The earlier such issues are

detected and addressed, the easier they are to resolve. If

such production-environment issues are not detected until

rollout of the entire application, it can take an inordinate

amount of time and resources to resolve performance issues.

No matter how development is structured and phased,

unless production implementation takes place

incrementally during development, large surprises tend to

remain in hiding, usually in the areas of performance and

modular interaction.

The Solution: Incremental Development via

Legacy Application Web-Enablement and

Transition Control

A solution is now available that addresses these issues. It is

a Web Application that can communicate with existing

Legacy applications, thus providing them web presence and

modern GUI screens. This solution also permits rapid,

flexible, and tightly integrated development of new

applications across different environments such as

Guardian and Java. The solution permits:

• Immediate and secure web-enabling of legacy

applications

• Ability to automatically transform primitive legacy

screens into modern web forms

• Ability to integrate legacy application into existing

(secure) web infrastructure

• Concurrent use of both web-enabled Legacy

application and developing Java application (or

modules)

• Tight integration, i.e. seamless blending, between

the legacy application and developing Java

applications

• Efficient, Incremental transition from the web-

enabled legacy application to the Java application

The only performance that

counts is the performance

achieved in a production

environment

Incremental Development via

Legacy Application Web-

Enablement and Transition

Control makes phased transition

of legacy application projects

possible

• An integration interface to support phased

development and rollout of new applications or

enhancements.

A multi stage transitioning approach makes legacy

application projects much more manageable and feasible.

Incremental Development starting with Legacy Application

Web-Enablement and continuing as a phased, transitional

process allows businesses to leverage their existing legacy

application and focus on creating value added products.

This combined approach provides greater flexibility for

businesses to meet their specific needs. Businesses using

this approach can take on large projects ranging from

Legacy Migration, Legacy Enhancement, and Web Portal

Integration. Projects will be easier to implement and

deploy over the various stages of the whole product

development cycle.

Benefits to Incremental Development via

Legacy Application Web-Enablement and

Transition Control

Incremental Development via Legacy Application Web-

Enablement and Transition Control reduces overall costs

and makes unwieldy projects manageable.

Extend Legacy Application Life

If your legacy application’s primary weakness is its

primitive user interface, or its inability to be accessed over

the web, both these failings can be addressed through a

Web Application that provides secure, (platform-

independent) thin-client browser access into your legacy

application, and also for transformation of legacy screens

into modern GUI screens. These capabilities alone can

extend the useful life of your legacy application.

When it is realized that the web-enabled legacy application

can be attached into existing web infrastructures, such as

ldap security, the legacy application’s continued value is

further leveraged.

Finally, new Java development can be integrated

seamlessly with the legacy application, so all add-on

capability for the legacy application could be created in the

Java environment.

Reduce Cost Before Benefit Gap

The approach of modernizing legacy applications in stages,

by first web enabling them, followed by incremental

Reduced Cost Before Benefit

Gap results in quicker ROI.

transition to Java is one that greatly reduces the cost-benefit

gap described earlier. First, secure web enabling provides

immediate value. Automatic transformation of legacy

screens into modern GUIs provides further immediate and

dramatic value. Then, as Java development proceeds,

transition from the Legacy environment to the new

environment can be implemented in small increments.

By using a Web Application that provides a web interface

into legacy applications and an interface to which other

java applications can be attached, one gains the ability to

transition gradually from the legacy application to the new

Java application. It is possible to deploy a new, evolving

application in an incremental fashion. No more waiting for

the whole application to be finished before it can be used in

a production environment. Thus, incremental development

costs generate matching incremental results. The cost-

benefit gap is closed. And, the incremental implementation

of development phases means early phases can begin

generating an ROI in the near term. It becomes entirely

feasible that demonstrated results and ROI from early

phases of the development could provide the funding for

subsequent phases.

Manageable Projects

Large projects are hard to manage and difficult to keep on

task. In reducing a large project into smaller definitive

stages that have deliverables that can be used and built

upon, the overall project will be easier to manage and track.

And, as each staged deliverables is used in a production

environment, it can provide important feed back to

development managers to assist them in tracking and

guiding the overall project effort.

Fit into Budget Cycles

Large legacy application projects are hard to budget

because they can last into years. By reducing large projects

into smaller definitive stages (mini-projects), it is easier to

map development stages to the budget cycle. This eases

milestone delivery, obviously begins incremental funding

approval, Also, if budgets get tight and development is

placed on hold, any negative effect on the overall project

status can be mitigated since the next phase of the project

can be placed on hold until the funding becomes available

while the previous project phase is already being used in

the production environment, and thus achieving ROI.

Shifting budget cycles can

have a huge impact on

monolithic large scale

projects

Identify Performance Problems Up Front

Performance problems are hard to track down when testing

a huge application that was developed without a staged

transition. By using an incremental staged application

release into the production environment, it is easier to

pinpoint where the performance problem lies and they can

be addressed immediately. Because each delivered stage

must meet performance objectives, there will be no

performance issues remaining when the times arrives for

acceptance of the entire completed product.

Legacy Application Maintenance Issues

The approach of legacy application web-enablement,

followed by gradual transition addresses most legacy

application maintenance issues. First, web-enablement

occurs as an exterior process from the legacy application –

so no code changes are required in the legacy application.

Second, since the transformation of Legacy screens into

modern GUI screens is automatic, ongoing legacy

maintenance can be unimpaired. Finally, since this

approach permits integration of new java applications with

the legacy application, all future large-scale maintenance

(or development of add-on capabilities) can take place

within the Java environment and either attach to, or replace

legacy functionality.

Legacy Application Project Scenarios

There are many legacy applications projects that are

currently being undertaken by various companies. Here are

two examples that can benefit greatly from incremental

stage development via Legacy Application Web-

Enablement and Transition Control

Legacy Application Migration Scenario

At some point in time, businesses may determine that their

legacy application needs to be re-written. An example of

this is migrating an IBM legacy application over to the

NonStop Java environment. Replacing an existing legacy

application can require a huge investment in time, effort,

and cost.

Using technology to provide immediate web-enablement

and modern GUIs for the Legacy Application, with

Transition Control, it is possible to deploy the new,

evolving application in an incremental fashion. No more

waiting for the whole application to be finished before it

can be used in a production environment.

Performance problems can be

difficult to diagnose in

monolithic application

releases

• First, provide immediate, secure web presence for

the legacy application, utilizing modern GUI

screens, and taking advantage of existing web

infrastructure such as ldap access controls. .

• Then, begin ‘mining’ business logic from the legacy

application and developing equivalent business

functionality within a Java application.

• As elements of the Java application are developed,

transition relevant transactions from the legacy

environment into the Java environment, seamlessly

blending the legacy application with the new

application.

• Continue transitioning incrementally until the new

application is completely phased in and the legacy

application has been completely superceded.

In this fashion, Java application development becomes an

interactive transition. The existing legacy application and

the new re-written application will be running side by side

using the Transition Control as the connection and control

point to direct users into either the legacy application or the

new application.

Legacy Application Enhancement and Integration
Scenario

Providing value-added features within legacy applications

can be complex and sometimes downright prohibitively

difficult depending on how the application was designed, or

how extensively it has been modified over the years.

By using Legacy Application Web-Enablement, a secure,

modern web portal interface into your legacy application

can be achieved in a very short time frame. The Transition

Control aspect can also provide the integration point to

incorporate ‘external’ java development as add-on

functionality to legacy applications. This means one can

modernize legacy applications without completely

rewriting them. In addition, existing infrastructure and

security modules can now be used to control access into the

legacy application.

The Crystal Point Solution: AppViewXS 2.0

and Struts

Crystal Point’s AppViewXS 2.0 is a Web application that

runs on the server side. It provides web access into legacy

applications and has been integrated with the Struts

Crystal Point’s AppViewXS

2.0 product integrated with

Struts provides a powerful

and effective tool for

handling legacy application

projects

framework to provide a convenient interface point to

moderate the flow of information between the Web

Browser and the Legacy Application. By using

AppViewXS 2.0 with a phased transition project plan,

legacy application projects are easier to manage and

implement.

AppViewXS Background

AppViewXS is a server based product offered by Crystal

Point to provide a method that is both powerful and simple

to use to renew host applications and integrate for the web.

This application provides tools for interface re-engineering

of legacy applications. By “interface re-engineering” we

mean:

Access to the functionality embedded within

terminal-based applications through graphical

user interfaces that utilize modern controls

and communication protocols to allow a

rejuvenated look and feel for the application

plus the ability to extend and build upon the

legacy application for workflow and interface

optimization as well as multi-hosted, multi-

application data integration.

AppViewXS basically acts as the conduit through which a

“green screen” legacy system and its advantages can cross

over to the GUI world of the Web. Without any

programming or scripting, AppViewXS standardizes

applications and makes them more intuitive and easier for

users with varying skill levels to use.

Using Struts to Provide the Plugin Point

Struts is an open source framework for building Java web

applications. It is used to help extend and create a plug-in

point to control access to the AppViewXS application

which in turn provides access to the legacy application.

This plug-in point provides a convenient and

straightforward way to intercept the incoming data and

process the result before sending it to the Host Mainframe

or to the Browser. This is also the access point to leverage

existing Security and infrastructure modules, and to

enhance the synergy and interaction between a legacy

application via AppViewXS and external web and java

applications.

Struts Framework Process Flow Chart

Struts Framework is a

well known and

established open-

source framework used

to integrate Java

technologies and lets

developers build web

applications quickly

and effectively

To explain the process, a diagram depicting the flow of

information through the Struts framework and AppViewXS

2.0 is shown below.

The Struts Action class provides the access point to

external applications and other re-usable infrastructure

related modules. The AppViewXS Proxy is responsible for

maintaining the connection specific information as well as

specific error handling to the AppViewXS servlet. The

AppViewXS servlet provides the connection access to the

HP NonStop Host and returns the HTML response back to

the AppViewXS Proxy. AppViewXS Proxy parses the

HTML response looking for specific connection

information to update its state. The Action class then

formats the response to parse the HTML data that should be

displayed to the end user.

Benefits in using AppViewXS 2.0

AppViewXS 2.0 Web Application is already integrated

with the Struts framework and it provides a useful plug-in

point to combine the AppViewXS 2.0 application into your

overall product solution. This solution provides many

benefits and enhancements to any projects that require

access to Host-based legacy applications.

With AppViewXS 2.0 and Struts, legacy application

migration, integration, and enhancement can be achievable

as a very near time frame deliverable. Coupled with

incremental stage development cycles, large projects can be

broken down into smaller projects and become easier to

manage and monitor. The phased deliverables can be

integrated and used in the production environment much

faster and still leverage the existing legacy application.

While the benefits of the Struts framework integrated with

AppViewXS 2.0 are great, it is also important to recognize

and remember the other valuable capabilities AppViewXS

continues to provide:

• AppViewXS 2.0 immediately provides a modern GUI

look and feel to your legacy application (transparent to

host application).

• Secure web-access to your host

• Load Balance connections evenly across different ports

or hosts

• Dynamic Host Update

Browser HP

NonStop

Host

AppViewXS

Servlet

AppViewXS

Proxy

Customer’s

Struts

Action

Class

Crystal Point’s solution

provides many benefits

including very near time

frame deliverable for legacy

application projects, reduce

cost before benefit gap,

match development process

to budget cycles, modernize

and extend existing legacy

application

• Provide a way to have AppViewXS session to

display dynamic host updated messages onto a

companion applet

• Tunneling Servlet

• Provide a tunneling circuit to a host located in a

different geographical location or network segment

as that of the Web Application server.

• Enhanced with a failover node in case the primary

Tunneling Servlet goes down the secondary one

will take over

• Create ‘smart screens’

• Increase usability via GUI controls

• Add processing logic

• Modify workflow

• Data integration with multiple sources

• Built in Scripting Language – Advanced Macro Facility

Script

• Provide automation capabilities

• Perform logical operations on data

• Record/Playback Macro tool helps aid in generating

custom AMF Script

• Make external calls to:

• Java Applet

• Class file

• SQL to any ODBC/JDBC

• HTML

• XML

• Open any URL – static or dynamic

Bottom Line

For businesses that need to transition or enhance their

monolithic legacy applications to a more agile environment

where they can mix and match business logic into new

applications, Crystal Point’s transition by stages solution

using AppViewXS 2.0 and the Struts Framework provides

a nice answer. By overcoming the traditional inherent

challenges of legacy application projects, businesses can

decrease their cost before benefit gap, identify performance

issues upfront, match development process to budget cycles,

modernize and extend the life of their existing application.

